

東北大学大学院理学研究科物理学専攻 東北大学理学部物理学科

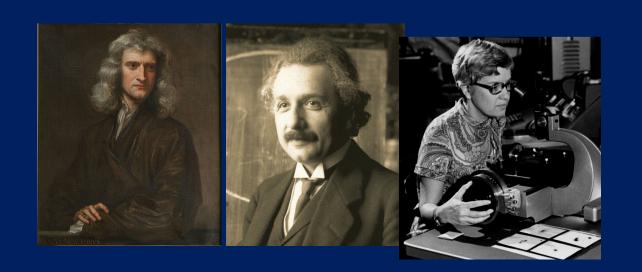
Department of Physics, Graduate School of Science and Faculty of Science, Tohoku University

一般・企業・卒業生の方へ

学部受験生の方へ

大学院受験生の方へ

在学生の方へ



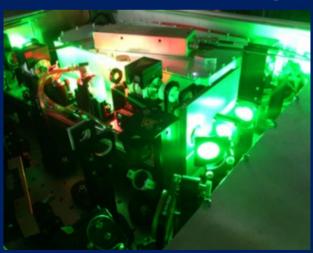
2021年オンライン大学院入試説明会「物理専攻概要」

物理学専攻長 高橋史宜

物理学:自然界のさまざまな現象の背後に存在する法則を,観測事実に拠り所を求めつつ追求する学問

最先端の研究内容,そしてその対象は新たな発見とともに常に 変化していく

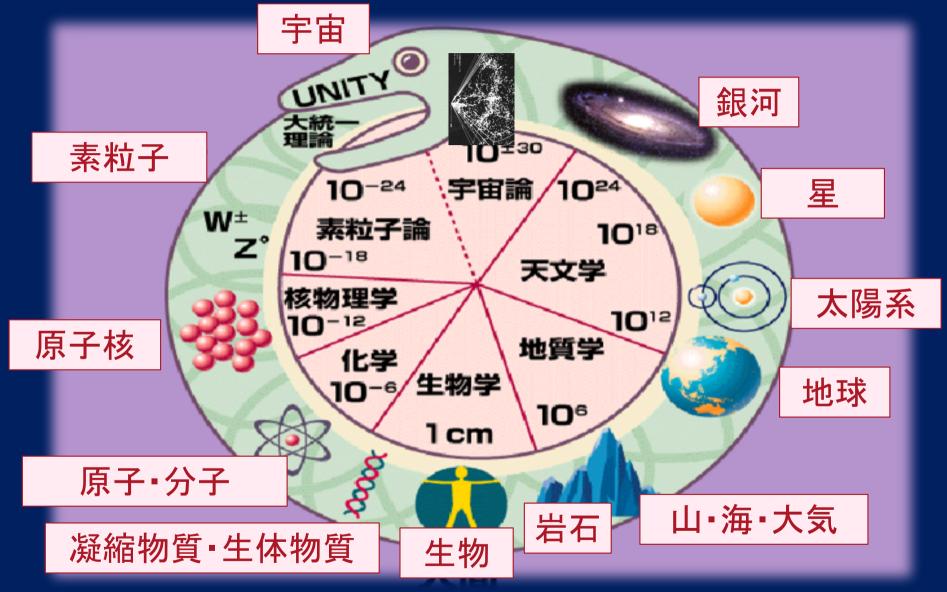
物理学は何を発見し、何を創成してきたか? インフレーション、ニュートリノ、核磁気共鳴、X線 レーザー、高温超伝導、カーボンナノチューブ……



ニュートリノ

核磁気共鳴(MRI)

X線


レーザー

高温超伝導

カーボン ナノチューブ

自然を理解する学問の物理が現代文明を支えている

物理学専攻の守備範囲

(S. Glashow's ouroboros)

小さいもの(素粒子)から大きいもの(宇宙)まで50桁!

物理学専攻

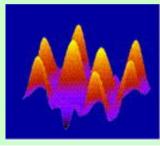
分野

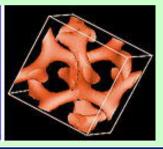
手法

理論

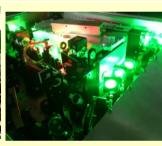
実験

素粒子・原子核


物質の根源、相互作用原子核の構造と反応


物性物理

物質(粒子集団)の性質


新物質の発見

Rock Record Reco

1. 素・核理論 : 素粒子・宇宙理論、原子核理論

2. 素・核実験 :素粒子実験(加速器)、素粒子実験(ニュートリノ科学研究センター)

:原子核物理、 核放射線物理(サイクロトンRIセンター)、 加速器科学(連携大学院)

:原子核理学(電子光センター)

3. 物性理論: 物性理論(理学研究科)

4. 物性実験I : 光電子固体物性、極低温量子物理、巨視的量子物性、

微視的構造物性、低次元量子物理、強相関電子物理(連携大学院)

:スピン構造物性(金研)、強磁場物性物理(金研)、低温物質科学(金研)、

分子物性物理(金研)、薄膜ヘテロ界面物性(金研)

5. 物性実験II : ソフトマター・生物物理、光物性物理、超高速分光、 量子ダイナミクス, 量子機能計測(連携大学院)

:スピン機能物質科学(金研)、結晶成長物理(金研)、表面構造物性(多元研)、 スピン量子物性(多元研)、電子線ナノ物理(多元研)、結晶構造物性(多元研)

素粒子・原子核物理学の最先端


宇宙の始まり,極小の世界から極大の世界、宇宙へ

物質反物質非対称性 真空の本質

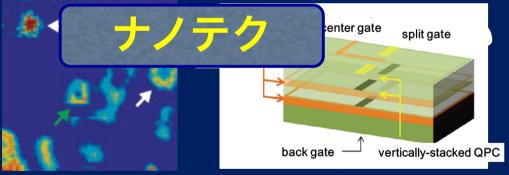
国際リニアコライダー

ハイパー核・中性子星 宇宙元素合成 核力の謎

学内加速器で視る極微の世界

新しい核励起モード 核物質状態方程式 陽子半径

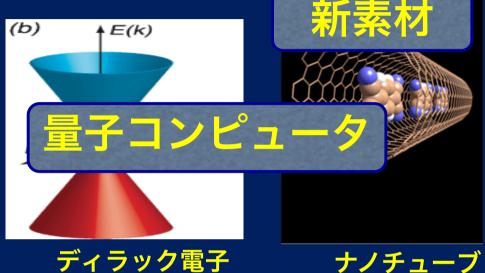
超スマート社会 Society5.0を拓く物性物理学

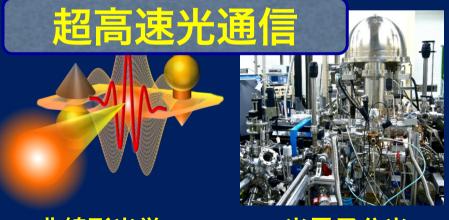

・高温超伝導

低電力消費

・トポロジカル絶縁体

・ナノプローブ、ナノデバイス


量子ホール効果 のナノ計測 ナノデバイス


・ソフトマタ・

バイオテクノロジー

ナノネットワーク物質

・フォトニクス・レーザー

非線形光学

光電子分光

東北大学・大学院物理学専攻

教員数:~160名

<基幹講座>

量子基礎物理学講座、素粒子·核物理学講座、 固体統計物理学講座、電子物理学講座、量子物性物理学講座 領域横断物理学講座

<協力講座>

原子核理学講座(電子光理学研究センター)、

高エネルギー物理学講座(ニュートリノ科学研究センター)、

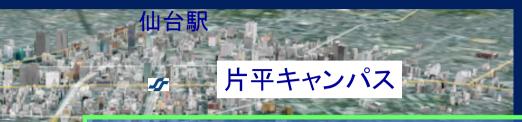
核放射線物理学講座(サイクロトロン・ラジオアイソトープセンター)

金属物理学講座(金属材料研究所)、

結晶物理学講座(金属材料研究所)、

分光物理学講座(多元物質科学研究所)

<連携大学院>


加速器科学講座、強相関電子物理学講座、量子機能計測講座

東北大学キャンパス

物理学専攻

金属物理学講座(金属材料研究所) 結晶物理学講座(金属材料研究所) 分光物理学講座(多元物質科学研究所)

量子基礎物理学講座(素核理論)、素粒子·核物理学講座(素核実験)、 固体統計物理学講座(物性理論)、電子物理学講座、量子物性物理学講 座、

領域横断物理学講座、相関物理学講座

高エネルギー物理学講座(ニュートリノ科学研究センター)

核放射線物理学講座(サイクロトロン・ラジオアイソト―プセンター

青葉山キャンパス

原子核理学講座(電子光理学研究センター

高エネルギー加速器機構、日本原子力研究開発機構、理化学研究所、 田附興風会医学研究所北野病院

物理学専攻+魅力的なプログラム

前期課程

研究(各研究室) セミナー(6単位) 課題研究(10単位)

講義(14単位以上)

(90分 x 1学期 =2単位)

修士論文 最終試験(発表会)

就職 後期課程進学

修士研究教育院生: 30名 (2年次への進級時選抜) 博士研究教育院生:30名 (進学時に選抜)

国際共同大学院

海外の世界トップレベルの研究者と 共同で学生を指導 精華大学(中国)、パーデュー大学、 ユーリッヒ研究所(ドイツ)、 オルセイ研究所(フランス),IFIC(スペイン)等 (M2から)

* スピントロニクス

*宇宙創成物理学

*物質科学

先端理学国際コース(IGPAS)

英語で授業:単位として取ることができる。

進路 H29, 学部、修士卒の進路の一部(物理)

電気・電子

日立製作所(3)

- ・パナソニック(3)
- ・三菱電機(6)
- ・富士通
- ・シャープ
- ・東芝
- ・村田製作所
- ・アルプス電気
- ・ルネサス

官公庁

気象庁

- ・宇宙航空研究
- ・開発機構
- ・宮城県教員

自動車

- ・トヨタ自動車
- ・日産自動車
- ・マツダ

人工知能、高速通信

日本IBM

- ・カシオ計算機
- ・NTTデータ
- ・日本ユニシス
- ・日本電気通信システム
- ・三菱スペースソフトウェア

金融

- ・みずほフィナンシャル グループ
- ・りそなホールディングス

光学

キャノン

ニコン

コニカミノルタ

材料

東レ

エネルギー・電力

中部電力

日本原燃

輸送

日本航空

- ・日本郵船
- ·JR東日本

その他

青森放送

物理学科/物理学専攻ホームページ

http://www.phys.tohoku.ac.jp

東北大学大学院理学研究科物理学専攻 東北大学理学部物理学科

Department of Physics, Graduate School of Science and Faculty of Science, Tohoku University

一般・企業・卒業生の方へ

学部受験生の方へ

大学院受験生の方へ

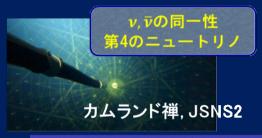
在学生の方へ

教職員の方へ

Enalish

物理研究に興味のある皆さんの参加を待っています

素粒子・原子核物理学の最先端 宇宙の始まり,極小の世界から極大の世界、宇宙へ

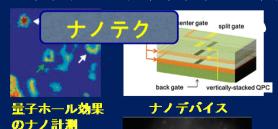

物質反物質非対称性 真空の本質 Super-KEKB 国際リニアコライダー

ハイパー核・中性子星

ご清聴ありがとうございました。

学内加速器で視る極微の世界

東北大学物理学専攻は、 物理学のすべての分野で 世界最先端の研究を行っています。


皆さんが、どのような分野に興味を 持っていても、活躍することが 可能です。

超スマート社会 Society5.0を拓く物性物理学

・高温超伝導 低雷力消

トポロジカル絶縁体

・ナノプローブ、ナノデバイス

・ソフトマタ・

ディラック電子

・ナノネットワーク物質

・フォトニクス・レーザー

ナノチューブ