数学・物理ブロック

理学部の対面プログラムは ブロックに分けて実施します。

7/**27**(冰)

7/**28**(未)

午前の部 9:00-11:30

午前の部 9:00-11:30

9:00	A-01	A-02	A-03	A-04
	模擬講義	模擬講義	模擬講義	模擬講義
10:00	移 動	移 動	移 動	移動
10:30	数学①	物理①	数学②	物理②
11:00	数学②	物理②	物理①	数学①

午後の部 13:30-16:00

13:30	B-01	B-02	B-03	B-04
	模擬講義	模擬講義	模擬講義	模擬講義
14:30	移動	移 動	移 動	移 動
15:00	数学①	物理①	数学②	物理②
15:30 16:00	数学②	物理②	物理①	数学①

9:00	C-01	C-02	C-03	C-04
	模擬講義	模擬講義	模擬講義	模擬講義
10:00	移 動	移 動	移 動	移動
	数学①	物理①	数学②	物理②
11:00	数学②	物理②	物理①	数学①

午後の部 13:30-16:00

13:30	D-01	D-02	D-03	D-04
14.00	模擬講義	模擬講義	模擬講義	模擬講義
14:30 15:00	移 動	移 動	移 動	移動
15:30	数学①	物理①	数学②	物理②
16:00	数学②	物理②	物理①	数学①

数学棟のご案内

(1)

数学専攻資料室の案内を行います。普段見るこ とができない貴重な資料も展示しています。

※企画が変更になりました (7/22)

「石取りゲーム」の数理

石を交互に取っていき、最後の1つを取った方 が勝ちというシンプルなゲームです。 この石取りゲームを極めた数学科の「マスター」 たちに、参加者の皆さんは勝てるでしょうか? ゲームに挑戦してもらった後、このゲームの背 後にある数学についても紹介します。

石取りゲーム (ニム)は2人でいくつかの山から

1

象を体験し、その不思議に迫ります。

日

理

28日

原子の見かた

X線を利用して物質中の原子配列を可視化す る測定手法を、レーザー光を用いたデモ実 験や実際の実験装置の紹介を通して説明し ます。

目で見る素粒子・原子核の実験

素粒子・原子核は直接目で見ることができ ないほど小さな世界ですが科学者は工夫し てその存在を目で見えるようにし、実際に 存在することを示しました。このツアーで は、チャールズ・ウィルソンが 1927 年にノー ベル物理学賞を受賞した霧箱や最新の実験 装置を使ってどのように可視化しているか と、物理の実験研究について話をします。

複素数の不思議と現代数学

数学科 竹内潔 教授

複素数という「あの世」の数を導入することで、 「この世」の理解が格段に進むことがあります。 「あの世」は大変美しく、多くの数学者が研究し ています。なかでも日本人の貢献は目覚ましい ものがあります。

本講演では、複素数の定義や簡単な応用から始 めて、現代数学の最前線でいまどのようなこと が注目を集めているのか、までお話ししたいと 思います。

ニュートリノは役に立つ?

義

~ 地球内の熱量を測る ~

物理学科 渡辺寛子 助教

電気的に中性で極端に軽い質量を持つ素粒子 ニュートリノ。その性質の理解が進み、道具と して用いる研究も行われています。東北大学で 進められている、地上にいながらにして地球深 くの熱量をニュートリノで測る研究について紹 介します。

ガリレイが残した課題

数学科 正宗淳 教授

皆さんは今日「1秒」がどのように定義される かご存知ですか?

「1秒」は100億分の1の誤差で、セシウム133 原子に関する周期を基に定義されます。

そして、この「周期」を用いるアイディアは17 歳のガリレイが「時間」を「幾何学」に取り込 む方法を振り子の周期に見出したことに端を発 します。人類がはじめて「運動」に着手した記 念すべき瞬間です。

実は天才ガリレイが挑んだ関連する問題があり ます。

その後、この問題はどうなったか?解決したの か?現代社会でも重要なそのテーマについてお 話ししたいと思います。

カーボンナノチューブの世界にようこそ 物理学科 齋藤理一郎 教授

炭素原子でできた円筒物質であるカーボンナノ チューブをご紹介します。

極低温の世界

-196℃の極低温で生じる超伝導や相転移現

27

化学・生物ブロック

理学部の対面プログラムは ブロックに分けて実施します。

7/**27** (7k)

7/**28**(未)

午前の部 9:00-11:30

午	訶	の	部
9:0	0 -	11:	30

9:00	A-05	A-06	A-07	A-08
	模擬講義	模擬講義	模擬講義	模擬講義
10:00	移 動	移 動	移 動	移動
10:30	化学①	生物①	化学②	生物②
11:00 11:30	化学②	生物②	生物①	化学①

午後の部
13:30-16:00

13:30	B-05	B-06	B-07	B-08
	模擬講義	模擬講義	模擬講義	模擬講義
14:30 15:00	移 動	移動	移動	移動
	化学①	生物①	化学②	生物②
15:30 16:00	化学②	生物②	生物①	化学①

C-05	C-06	C-07	C-08
模擬講義	模擬講義	模擬講義	模擬講義
移 動	移 動	移 動	移 動
化学①	生物①	化学②	生物②
化学②	生物②	生物①	化学①
	模擬講義 移 動 化学①	模擬講義 模擬講義 移動 移動 生物①	模擬講義 模擬講義 移動 移動 化学① 生物① 化学②

午後の部 13:30-16:00

13:30	D-05	D-06	D-07	D-08
.0.00	模擬講義	模擬講義	模擬講義	模擬講義
14:30	移 動	移動	移動	移 動
15:00	化学①	生物①	化学②	生物②
15:30 16:00	化学②	生物②	生物①	化学①

研究室見学

(1)

次の 2 つの研究室の研究内容を紹介します。

- 1. コンピュータで原子・分子の動きを探る(森
- 2. 合成化学で機能を創る(瀧宮研)

研究室見学

次の2つの研究室の研究内容を紹介します。

1. 新しい超伝導体や磁石を合成する(福村研) 2. キラルがキラリ! 不斉触媒反応の最前線(寺 田研)

生物学科展示1

次の4つの研究室の研究内容を紹介します。

生

- 1. 湖と干潟で生態学: カニとミジンコの不思議 (水圏生態)
- 2. 特殊な進化をした動植物とゲノム(進化ゲノ
- 3. 鳥の「言葉」さえずりの脳内メカニズム(脳
- 4. 脳を顕微鏡で覗いてみよう (脳神経システム)

生物学科展示2

次の4つの研究室の研究内容を紹介します。

- 1. 植物の旺盛な成長の秘密を探る(植物発生)
- 2. 植物が光合成するところを見てみよう (機能
- 3. ハエとクラゲに学ぶ神経科学(神経行動)
- 4. 線虫から探る生命の不思議(発生ダイナミク

合成化学で機能を創る 化学科 瀧宮和男 教授

ベンゼンに代表されるパイ電子系有機化合 物は自由に動ける電子を持つため、分子が 集まることで電子機能の舞台となります。 新しい分子を創りだし、それらを精密に並 べ、電気伝導、光電変換、熱電変換などの 電子機能を探求する研究について紹介しま す。

重複による遺伝子の進化 生物学科 牧野能士 教授

義

日

ヒトのゲノム中には約 20,000 の遺伝子が存在し ます。これらの遺伝子はどのようにして生まれ てきたと思いますか?実は、ほぼ全ての遺伝子 が、既存の遺伝子の重複(コピー)によって生ま れてきたものなのです。本講義において、重複 した遺伝子の進化について学び、分子進化学や ゲノム科学に対する理解を深めましょう。

光と分子: ミクロの世界を どうやって観る?

化学科 藤井朱鳥 教授

個々の分子は小さく、直接見ることは出来ませ ん。しかし私たちは分子の構造を良く知ってい

本講義では、どのようにしてミクロな分子の世 界を「観る」ことが出来るのかについてお話し します。

脳と感情

生物学科 筒井健一郎 教授

動物は、進化の過程で、より大きく複雑な脳を もつようになり、行動を複雑化・高度化させて きました。脊椎動物、特に、哺乳類では、大脳 が発達し、そのために、豊かな感情をもってい ます。われわれがイヌやネコなどの伴侶動物と 「こころが通じる」のもそのためです。本講義に おいては、脳において感情が生まれるメカニズ ムと、その不調によって生じる精神障害につい てお話しします。

光と分子:ミクロの世界を どうやって観る?

化学科 藤井朱鳥 教授

個々の分子は小さく、直接見ることは出来ませ ん。しかし私たちは分子の構造を良く知ってい ます。

本講義では、どのようにしてミクロな分子の世 界を「観る」ことが出来るのかについてお話し します。

重複による遺伝子の進化 生物学科 牧野能士 教授

ヒトのゲノム中には約 20,000 の遺伝子が存在し ます。これらの遺伝子はどのようにして生まれ てきたと思いますか?実は、ほぼ全ての遺伝子 が、既存の遺伝子の重複(コピー)によって生ま れてきたものなのです。本講義において、重複 した遺伝子の進化について学び、分子進化学や ゲノム科学に対する理解を深めましょう。

合成化学で機能を創る 化学科 瀧宮和男 教授

ベンゼンに代表されるパイ電子系有機化合 物は自由に動ける電子を持つため、分子が 集まることで電子機能の舞台となります。 新しい分子を創りだし、それらを精密に並 べ、電気伝導、光電変換、熱電変換などの 電子機能を探求する研究について紹介しま す。

脳と感情

講

義

28

В

午

生物学科 筒井健一郎 教授

動物は、進化の過程で、より大きく複雑な脳を もつようになり、行動を複雑化・高度化させて きました。脊椎動物、特に、哺乳類では、大脳 が発達し、そのために、豊かな感情をもってい ます。われわれがイヌやネコなどの伴侶動物と 「こころが通じる」のもそのためです。本講義に おいては、脳において感情が生まれるメカニズ ムと、その不調によって生じる精神障害につい てお話しします。

宇宙地球物理(地球物理・天文)・地学ブロック

理学部の対面プログラムは ブロックに分けて実施します。

7/**27** (7k)

7/**28**(未)

午前の部 9:00-11:30 午前の部 9:00-11:30

	A-09	A-10	A-11	A-12
9:00 9:30	地物 A	地圏 A	地物 B	地圏 B
	地圏A	地物 A	地圏 B	地物 B
10:00	移 動	移 動	移動	移 動
10:30	模擬講義	模擬講義	模擬講義	模擬講義
11:30				

午後の部 13:30-16:00

10.00	B-09	B-10	B-11	B-12
13:30 14:00	天文 A	地惑 A	天文 B	地惑 B
	地惑 A	天文 A	地惑 B	天文 B
14:30 15:00	移 動	移 動	移 動	移 動
15:00	模擬講義	模擬講義	模擬講義	模擬講義

16:00

9:00	C-09	C-10	C-11	C-12	
9:30	地物 A	地圏 A	地物 B	地圏 B	
	地圏 A	地物 A	地圏 B	地物 B	
10:00	移 動	移 動	移 動	移 動	
10:30	模擬講義	模擬講義	模擬講義	模擬講義	
11:30					

午後の部 13:30-16:00

D-09	D-10	D-11	D-12
天文 A	地惑 A	天文 B	地惑 B
地惑 A	天文 A	地惑 B	天文 B
移 動	移 動	移 動	移動
模擬講義	模擬講義	模擬講義	模擬講義
	天文 A 地惑 A 移 動	天文 A 地惑 A 地惑 A 天文 A 移 動 移 動	天文 A 地惑 A 天文 B 地惑 A 天文 A 地惑 B 移 動 移 動 移 動

大気放射観測設備の見学

的としています。

大気海洋変動観測研究センター(気候学物理学 分野)はエアロゾル、雲、太陽・大気放射等の 連続無人観測を実施し、取得したデータを大学 内のデータサーバー経由で千葉大学における国 際地上観測ネットワーク (SKYNET) のサーバーに 転送しています。そのデータをエアロゾル・雲 の気候影響についての研究に用いるとともに衛 星観測によるエアロゾル・雲プロダクトの検証 のために利用されています。今回の見学会では、 地上リモートセンシング手法を用いたエアロゾ ル、雲、放射の観測システムを見学し、大気リモー トセンシングについての理解を深めることを目

太陽惑星空間系領域の紹介と実験室見学

太陽惑星空間系領域(C領域)では、地球や惑 星などの大気や磁気圏に跨る物理現象(地球や 惑星のオーロラ、火星や金星の大気や進化など) の解明を目指して研究を行っています。国内外 の拠点設備(宮城・福島の電波望遠鏡、ハワイ の光学望遠鏡など)による観測や、JAXAと共同 で探査機や人工衛星に搭載する観測機器の開発 とデータ解析、大規模数値シミュレーションな どを行っています。機器開発を行う実験室の見 学と、最新の研究について紹介します。

望遠鏡見学→天文学教室研究室見学

文

東北大学天文学教室では、宇宙の始まりや遠方 **天** 銀河から、近くの星や惑星の形成、そして星の 最期の超新星爆発やブラックホールの形成まで、 天文学のあらゆる分野の研究が行われています。 本ツアーではまず天文学教室の所有する 50cm 望遠鏡を見学したのち、少人数のグループに分 かれて天文学教室の研究室を見学し、最先端の 天文学研究の生の現場を御紹介します。

天文学教室研究室見学→望遠鏡見学

文

東北大学天文学教室では、宇宙の始まりや遠方 銀河から、近くの星や惑星の形成、そして星の 最期の超新星爆発やブラックホールの形成まで、 天文学のあらゆる分野の研究が行われています。 本ツアーではまず少人数のグループに分かれて 天文学教室の研究室を見学し、最先端の天文学 研究の生の現場を御紹介します。その後、天文 学教室の所有する 50cm 望遠鏡を見学します。

地球上のこれな~に? 一地図にみられる自然と人間の営み

地

地図や衛星画像にみられる奇妙なパターンや整 然とした規則性は自然や人間の営みを地表に刻 んだ記録です。この企画ではそれらを題材に地 学的・地理学的な知見を紹介します。

地球上のこれな~に? 一地図にみられる自然と人間の営み

地図や衛星画像にみられる奇妙なパターンや整 然とした規則性は自然や人間の営みを地表に刻 んだ記録です。この企画ではそれらを題材に地 学的・地理学的な知見を紹介します。

地球惑星物質科学ラボツアー

地球惑星物質科学科では、地球や太陽系の惑星 の成り立ちや構成、そこで起こっている様々な 現象を解明すべく、研究を行っています。研究 テーマはさまざまで、地球や宇宙で形成された 鉱物・岩石・隕石の生成過程を調べ、地球や惑 星の起源や進化、生命の発生や絶滅を追求した り、火山活動や地震活動について理解を深める 一方、地球・惑星深部の物性測定や物質の解明 にも取り組んでいます。ツアーでは、これらの テーマに関わる物質の合成や分析を行う実験室 の見学、最前線の研究成果についてのミニ講義 や座談会を企画しています。

地球惑星物質科学ラボツアー

地球惑星物質科学科では、地球や太陽系の惑星 の成り立ちや構成、そこで起こっている様々な 現象を解明すべく、研究を行っています。研究 テーマはさまざまで、地球や宇宙で形成された 鉱物・岩石・隕石の生成過程を調べ、地球や惑 星の起源や進化、生命の発生や絶滅を追求した り、火山活動や地震活動について理解を深める 一方、地球・惑星深部の物性測定や物質の解明 にも取り組んでいます。ツアーでは、これらの テーマに関わる物質の合成や分析を行う実験室 の見学、最前線の研究成果についてのミニ講義 や座談会を企画しています。

地物=地球物理学 地圈=地圈環境科学科(地学) 地惑=地球惑星物質科学(地学)

巨大地震は火山噴火を誘発するのか? 宇宙地球物理学科 西村太志 教授

1707年10月28日に遠州灘沖合から四国沖にか けての領域を震源とした宝永地震(マグニチュー ド 8.6) の発生から 49 日後の 12 月 16 日に富士 山が噴火(宝永噴火)したように、巨大地震が 発生すると近くの火山が発生することがよく知 られています。この講義の中では、長年にわた り議論されてきた大地震が火山噴火を誘発する メカニズムを説明するとともに、どのような条 件のときに火山噴火が誘発されるのか、信頼性 の高い世界規模のデータベースの解析結果をも とに解説します。

地形地質からさぐる活断層 ~直下型地震のしくみ 地圈環境科学科 遠田晋次 教授

兵庫県南部地震(阪神淡路大震災)や熊本 地震など、震度7の激震をもたらす直下型 地震は活断層によって発生します。活断層 は、ごく最近の地質時代、過去数十万年間 に何度も動きを繰り返し、今後も大地震を 起こす可能性があるものをいい、地形や地 表付近の地質に動きが刻まれています。日 本列島の平野、盆地、山地の形成にも関わっ ています。我々はそのような活断層の動き を紐解き、直下型地震を予測する研究を行っ ています。模擬講義では、仙台市を横切る 長町一利府線断層帯を例に、活断層とは何 かをわかりやすく説明します。

ブラックホールとは何か?

- 最新研究で迫るその正体 -宇宙地球物理学科 當真賢二 准教授

近年のイベントホライズン望遠鏡による電波リ ングの観測によって、超巨大ブラックホールの 存在が確実なものとなってきています。講演で は、ブラックホールとは何か?どうやって観測 するのか?宇宙におけるその役割とは何か?に ついて、最新研究を交えて紹介します。

ダイヤモンドの起源と成因を探る 地球惑星物質科学科 大藤弘明 教授

世の中で最も硬い物質であるダイヤモンドは純 粋な炭素の結晶です。ダイヤモンドができるた めには高い圧力と温度が必要で、それらの条件 が揃った地球の深部はダイヤモンドの主要な生 成場所です。しかし、どこでどのように生成す るのかを実際に見て確かめることはできず、様々 なヒントを手掛かりに想像するしかありません。 また、実は地球深部以外でもダイヤモンドが作 られることもあります。この講義の中では、そ のような様々な地球環境下で形成されたダイヤ モンドの起源と成因について解説します。

宇宙最古の光で宇宙誕生を探る 宇宙地球物理学科 服部誠 准教授

28

日

午

私達の宇宙は、ビッグバンの名残りの光(電波) で満ちています。この光は、宇宙マイクロ波背 景放射(CMB)と呼ばれており、宇宙最古に放 たれた光です。CMB は、宇宙誕生の謎を解き明 かす様々な情報が仕込まれた、宇宙研究の宝庫 模 です。この講演では、最先端の科学技術を駆使 して CMB の詳細観測を行い、宇宙誕生の謎を解 き明かそうと現在繰り広げられている世界最先 端の研究活動について紹介します。

ダイヤモンドの起源と成因を探る 地球惑星物質科学科 大藤弘明 教授

世の中で最も硬い物質であるダイヤモンドは純 粋な炭素の結晶です。ダイヤモンドができるた めには高い圧力と温度が必要で、それらの条件 が揃った地球の深部はダイヤモンドの主要な生 成場所です。しかし、どこでどのように生成す るのかを実際に見て確かめることはできず、様々 なヒントを手掛かりに想像するしかありません。 また、実は地球深部以外でもダイヤモンドが作 られることもあります。この講義の中では、そ のような様々な地球環境下で形成されたダイヤ モンドの起源と成因について解説します。

擬

前