A mysterious remnant from a rare type of supernova recorded in 1181 has been explained for the first time. Two white dwarf stars collided, creating a temporary "guest star," now labeled supernova (SN) 1181, which was recorded in historical documents in Japan and elsewhere in Asia. However, after the star dimmed, its location and structure remained a mystery until a team pinpointed its location in 2021. Now, through computer modeling and observational analysis, researchers have recreated the structure of the remnant white dwarf, a rare occurrence, explaining its double shock formation. They also discovered that high-speed stellar winds may have started blowing from its surface within just the past 20-30 years. This finding improves our understanding of the diversity of supernova explosions, and highlights the benefits of interdisciplinary research, combining history with modern astronomy to enable new discoveries about our galaxy.
White dwarf star collision. Artist's impression of two white dwarf stars merging and creating a Type Ia supernova. Type Ia supernovas are similar to type Iax supernovas, as they occur when two white dwarfs collide, but are brighter and the explosion completely destroys the stars. Type Iax supernovas, like SN 1181 where a remnant white dwarf is left behind, are more rare. &copu ESO/ L. Calçada
For more information, please visit the website of Tokyo University.
Publication Details:
Title: A Dynamical Model for IRAS 00500+6713: The Remnant of a Type Iax Supernova SN 1181 Hosting a Double Degenerate Merger Product WD J005311
Authors: Takatoshi Ko*, Hiromasa Suzuki, Kazumi Kashiyama, Hiroyuki Uchida, Takaaki Tanaka, Daichi Tsuna, Kotaro Fujisawa, Aya Bamba, Toshikazu Shigeyama
Journal: The Astrophysical Journal
DOI: 10.3847/1538-4357/ad4d99
Contact:
Kazumi Kashiyama,
Astronomical Institute, Tohoku University
Email: kazumi.kashiyama.a4 * tohoku.ac.jp(Replace * with @)
Website: https://www.astr.tohoku.ac.jp/~kashiyama/profile.html